Explore our Technologies ## DVT Application Reference Manual, V1.2 Document no: 177/52505 Rev. 1.2 # **Table of Contents** | Table of Contents | 5 | |---|----| | Chapter 1: Legal Disclaimer | 7 | | Chapter 2: DVT Overview | 10 | | Introduction | 10 | | Installing | 10 | | Licensing | 13 | | DVT Main Page | 17 | | CAN Window | 17 | | CAN Baud | 18 | | Vehicle interface | 19 | | Information Window | 20 | | Command Window | 22 | | Accessing the DVT Configuration Helper | 22 | | Help Section | 24 | | Chapter 3: DVT Configuration Helper | 26 | | Accessing Different Nodes | 26 | | Operational and Pre-Operational | 26 | | Set Operational (Set Op) | 26 | | Set Preoperational (Set Pre-op) | 26 | | Main Tab General Buttons | 26 | | Getting Controller Information | 26 | | Fault information and report | 27 | | Motor Setup Buttons | 28 | | Change Motor Algorithm | 28 | | Change Control Mode | 29 | | PMAC Encoder | 30 | | PMAC Max Speed Voltage | 31 | | Torque/Speed Maps (Motor Power Limit Map) | 32 | | DC link Voltage Cutback Map | 33 | | Local Motor Limits | 34 | | Control Gains | 36 | | Motor Thermistor | 37 | |--|------------------------------| | Driver Pipeline | 40 | | Battery Limits | 42 | | V/F Ratio (Only for V/F Induction Motor on HVLP and Slip | Control Mode on Gen4 LV). 45 | | Traction Application Buttons | 47 | | Baseline Profile | 47 | | Driveability Profiles | 48 | | Steering | 49 | | Input / Output Buttons | 50 | | Local IO Monitor | 50 | | Analogue Ranges | 51 | | Throttle/Footbrake setup | 52 | | Advanced settings | 53 | | Controller Access Level / Passwords | 53 | | Firmware Installation | 54 | | Uploading and Downloading Settings (DCF) | 55 | | Changing Node ID Number | 57 | | Chapter 4: Tree | 60 | | Tree | 60 | | Chapter 5: Input/Output -Configuration | 64 | | I/O Configuration | 64 | | Local Motor Control | 65 | | Digital Inputs | 66 | | Chapter 6: TPDOs/RPDOs | 68 | | TPDOs/RPDOs | 68 | | TPDOs | 69 | | RPDOs | 72 | | Chapter 7: Motor Demand Control | 76 | | Introduction | 76 | | CANopen for Control | 76 | | J1939 (BorgWarner H-and I-protocols) | 77 | | Debugging and Tracing | 78 | # Chapter 1: Legal Disclaimer # Chapter 1: Legal Disclaimer #### Copyright All rights reserved. The text, images and graphics, and their arrangement in the BorgWarner DVT User Manual are all subject to copyright and other intellectual property protection. These objects may not be copied for commercial use or distribution, nor may these objects be modified or reposted to other sites. #### Trademarks Unless otherwise indicated, all marks are subject to the trademark rights of BorgWarner, including each of its product name plates and its corporate logos and emblems. #### No warranties and pre-presentations This information is provided by BorgWarner and without warranty of any kind, expressed or implied, including (but not limited to) any implied warranties of merchantability, fitness for any particular purpose, or non-infringement of third-party rights. While the information provided is believed to be accurate, it may include errors or inaccuracies. In no event shall BorgWarner be liable to any person for any special, indirect or consequential damages relating to this material. #### Licenses No license to the BorgWarner's intellectual property or the intellectual property of third parties has been granted by this manual. #### Important Safety Information Electric vehicles (and their component parts such as motors, controllers and batteries) can be dangerous and cause severe damage to property and individuals if not handled correctly. All testing, fault-finding and parameter adjustment should be carried out by competent personnel. High voltages, currents and mechanical forces are all present and have the ability to cause harm. Using BorgWarner DVT to modify motor controller parameters can lead to an unsafe or dangerous system. DVT also allows for direct manual control of motor torque which should be never used on vehicle system and is only intended for dynamometer test bench use by sufficiently trained and competent persons where the DC electrical power can be easily and quickly disconnected. When setting up a new vehicle configuration, the vehicle should be immobilized until the basic driver controls have been configured and the driver is able to stop the vehicle safely. Before this point, it is possible for full torque to be output from the motor, regardless of the driver demands. The vehicle manufacturer's manual should be consulted before any operation is attempted. Recommended methods for immobilizing a vehicle is by either disconnecting the line contactor coil supply (only suitable for low voltage vehicles), or raising the drive wheels off the ground. Raised vehicles should be secured with blocks or axle stands. Do not rely on a jack or crane. Throughout this manual please take extreme caution when the following warnings are shown. A DANGER/WARNING indicates a hazard with a high level of risk, which if not avoided, could result in death or serious injury. A CAUTION indicates a hazard with a low level of risk, which if not avoided, could result in a minor or moderate injury, or damage to the controller, motor or battery. # Chapter 2: DVT Overview # Chapter 2: DVT Overview ## Introduction DVT is the main interface program used to interface with the BorgWarner motor controllers, such as Gen4, HVLP, Dragon8 and Gen5 controllers. Over the course of this manual, you will be instructed on how to effectively use the DVT and the user interface known as the DVT configuration helper. ## Installing From the following customer portal link, it is possible to download the latest version of DVT. https://sevcon.sharefile.com Using the following credentials to sign in: Username: dvt@sevcon.com Password: Installer100! Figure 1 customer portal login Once logged in, enter the "DVT installer" folder: Figure 2 DVT installer folder And download the ".exe" installation file inside. Figure 3 DVT installer file Proceed with the installation process. Please ensure that your Windows session has administration rights to avoid any installation/activation issues. Figure 4 First page of DVT installer Please select the components you wish to install on the page shown in Figure 5. It is recommended to install the latest versions of Tcl interpreter and IXXAT driver. If you are updating a recent version of DVT and already have these installed, please deselect the installation of Tcl interpreter and IXXAT driver. Then click Next; Figure 5 component selection Select the destination folder for the DVT installation (by default a new folder is created for each new version, so multiple versions can be installed on a PC simultaneously without corruption, please note that the previous version will not be uninstalled automatically); Figure 6 DVT install folder Shortcuts will be created automatically, click Install; Figure 7 DVT shortcuts At first the Tcl interpreter installation will start automatically, if it has been included in the previous step in Figure 5. For best installation results for use with DVT, click the "Advanced" install option on the Tcl installer license page, then on the next page select "Install for all users of this machine". After that all following steps select the default install options. In the next step the DVT installation will then complete automatically. For the final step it launches the lxxat driver installer. You may need to restart your PC for this to complete the install. You can leave all default options for this install. Figure 8 IXXAT driver installation ## Licensing The first time you run DVT, the user will receive a prompt asking the user to accept the terms and conditions of use, as well as provide a license file. There are three options in order to activate DVT depending on the purchase channel of the motor controller; - Direct from BorgWarner (only for OEM) - Authorized Distributors http://www.sevcon.com/contact-us/ (listed under Distributors and Resellers page) - Other Source Figure 9 DVT License window Selecting "Direct from BorgWarner" will show the user following note. So if the motor controller has been purchased directly from BorgWarner, send the license request email to the email address ITAdvtlicense@borgwarner.com as it is shown in the following figure. Figure 10 The motor controller has been purchased directly from BorgWarner If the motor controller has been purchased from an authorized distributer, then the license request should be sent directly to the distributer as it is shown in the following figure. Figure 11 The motor controller has been purchased from an authorized distributor If the motor controller has been purchased from other sources, then the user should follow what is shown in the following figure: Figure 12 The motor controller has been purchased from other sources After contacting using the correct email address according to the type of purchase, the user will receive a license via email as soon as possible. Applying through the correct channel will reduce the time taken to issue the license. The license can then be activated in DVT is as follows, first by selecting the "browse" button to open the local computer's file directory. The file can be found wherever the user saves it. Figure 13 selecting the license file to activate DVT After selecting the file, its pathway will show in the activation window: Figure 14 DVT license file selection Finally select the "Activate" button and restart DVT. ## **DVT Main Page** This is the main page of DVT. From here all the functions and settings of the BorgWarner motor controller can be accessed: Figure 15 DVT main page ## **CAN Window** When there is an active connection between DVT and the BorgWarner motor controller. The CAN
window, found in the upper left corner of the DVT, will show the traffic being transmitted. Unless being actively used for debug it is advised to disable high rate CAN message types (such as unknown, J1939, sync, PDO and Tx) using the filter options to reduce the PC resources used and potential CAN data loss; Figure 16 CAN window ## **CAN Baud** The different baud options can be seen inside the red box in Figure 17. The baud rate is the speed of data transmission to communicate with the configured BorgWarner motor controller. Figure 17 Blank CAN window due to selected wrong baud rate In Figure 17 for the CAN network connected there is currently an incorrect baud of 100kbit rate selected. This is indicated because the CAN window (seen in the blue box) is empty even though an active CAN node is connected and the NMT message types are enabled. If an incorrect baud rate is selected, then the CAN window remains blank. If correct baud is selected, then CAN bus transmissions will be seen scrolling in the CAN window. The DVT is now ready to perform operations. Figure 18 CAN window with buad rate selected properly ### Vehicle interface The DVT comes with a feature that will allow the user to view a variety of information on the motor, such as the current, voltage, temperatures etc. in real time. This is the vehicle interface and it can be accessed by selecting the button highlighted in red in Figure 19: Figure 19 Vehicle Interface Button Selecting the button will open a window separate to the DVT that looks like this: Figure 20 Vehicle Interface Window This window will update in real-time with measurements and information about the motor controller setup. Information displayed depends on the setup of TPDO, H- and I-protocols of the motor controller. ## Information Window The window found in the center of the DVT homepage is known as the "Information Window". Figure 21 Information Window This window can give a variety of information to the user such as faults being set inside the controller or the CLI debug information. CAN CLI messages will cause the controller to send text-based debug to the DVT window. Such as the bootup message shown in Figure 22. It also lists any parameter range errors in the configuration. You can enable and disable CLI message using CLI button in the DVT main window. ``` □ □ □ ∞ Information (and CLI) Window Information Node 1 14:42:29. Node 1 operational Cache Loaded. Genix 400 Volt Blencathra [Built Thu Jul 25 08:59:34 2019] s/w:3102.0006 h/w:00000005 ser no:2010100348 Reset reason:0x12810000 1 PMAC 3D table detected. 14:45:51. Node 1 timeout (Gen5) 14:46:29. Node 1 fault set (0x5308, CAN OFF bus, data 0x80 0x00 0x00). CANopen Error Code: 0x8100 Potential Cause: CAN OFF bus fault condition detected on multinode system. Suggested Action: Check CANbus wiring and configuration (all nodes are same baud rate and no 14:46:29. Node 1 operational (Gen5) 14:46:30. Node 1 fault cleared (0x5308, CAN OFF bus, data 0x00 0x00 0x70). CANopen Error Code: 0x0000 14:55:53. Opening EDS file for node 1: Genix_pc0x30030209_rev0x00020008.eds < ``` Figure 22 CLI bootup message on Node 1 Also faults information of each node is reflected in Information window under its dedicated node tab. For example, here the window shows a "low battery" fault in the controller configured as Node 2: ``` Information Node 1 Node 2 14:10:09. Node 2 pre-operational (Gen4 48V 270A) 14:10:19. Node 2 fault set (0x45C3, Supply Critical, data 0x00 0x00 0x00). CANopen Error Code: 0x3100 Potential Cause: Battery voltage has dropped below critical level Suggested Action: Check controller voltage supply 14:10:20. Node 2 fault set (0x45C6, Vhat below rated min, data 0x01 0x0B 0x13). CANopen Error Code: 0x3100 Potential Cause: Battery voltage is less than rated minimum voltage for controller for longer than lsec Suggested Action: Charge battery or check DC link voltage is within controller operating range (NOTE: This fault is sometimes seen at power down) ``` Figure 23 Information Window with set fault message on Node 2 After clearing the fault, the DVT will report to the user that the fault has been cleared by showing the error message in green. ``` Information Node 1 Node 2 14:10:09. Node 2 pre-operational (Gen4 48V 270A) 14:10:19. Node 2 fault set (0x4DC3, Supply Critical, data 0x00 0x00 0x00). CANopen Error Code: 0x3100 Potential Cause: Battery voltage has dropped below critical level Suggested Action: Check controller voltage supply 14:10:20. Node 2 fault set (0x4SC6, Vbat below rated min, data 0x01 0x0B 0x13). CANopen Error Code: 0x3100 Potential Cause: Battery voltage is less than rated minimum voltage for controller for longer than lsec Suggested Action: Charge battery or check DC link voltage is within controller operating range (NOTE: This fault is sometimes seen at power down) 14:10:38. Node 2 fault cleared (0x4SC6, Vbat below rated min, data 0x43 0x50 0x27). CANopen Error Code: 0x0000 ``` Figure 24 Information Window with cleared fault message on Node 2 ### **Command Window** The command window allows direct modification of all parameters. Incorrect configuration can lead to dangerous system operation. The DVT comes with a low-level input window for giving commands manually to the BorgWarner motor controller, you can find this window at the bottom part of the DVT: Figure 25 Command Window This tool is recommended for more experienced users of DVT only and can be minimized unless required, for more information please contact BorgWarner. ## Accessing the DVT Configuration Helper The DVT configuration helper is the main user interface found in the DVT. Its function is to make viewing/changing settings inside the controller easier, creating TPDO/RPDO's and managing Input/output connections with a user-friendly interface. The DVT configuration helper can be accessed through selecting the button . On the latest versions of DVT the helper is launched automatically in the main window. Figure 26 DVT configuration helper This is the DVT configuration helper, its features will be detailed in the following chapter. It is recommended to save the existing configuration in a dcf file before changing any parameters. Figure 27 DVT configuration helper # **Help Section** Using help option in the DVT main window you can find fault codes list which gives you useful information once you face a fault in settings. Figure 28 Fault codes list # Chapter 3: DVT Configuration Helper # Chapter 3: DVT Configuration Helper ## **Accessing Different Nodes** If there are multiple nodes connected to the CAN network, DVT can be used to access each node's configuration via the DVT helper. This is done through the CANopen node ID switch found here: Figure 29 Node ID selection in DVT Configuration Helper By clicking the small arrow seen above, you can cycle through different node ID numbers. ## Operational and Pre-Operational Two of the most important buttons on the DVT configuration helper are the "Set Op " and "Set Pre-op " buttons. These buttons are used to activate critical functions within the motor controllers. Only one button will be shown depending upon the existing state. ### Set Operational (Set Op) Selecting the "Set Op" button will essentially set the controller to "ready to drive". While in this mode, the many of the motor controllers' settings cannot be changed. ### Set Preoperational (Set Pre-op) Many of the controllers' objects can only be changed while in pre-operational mode. When in pre-operational mode, CAN PDO messages will not be transmitted from the controller. ## Main Tab General Buttons ### **Getting Controller Information** Basic hardware and software information about the BorgWarner controllers can be found by selecting the " Get Controller Info " button. The first button found on the main page of the DVT configuration helper. Figure 30 Get Controller Info button Selecting this button will cause a new window to open, which will fill with information on the controller similar to Figure 31. Figure 31 Controller information This information can be refreshed at any time by selecting the Get Controller Info button again. ### Fault information and report BorgWarner motor controllers are designed to detect a range of operational faults and warning conditions. Selecting the Get Fault Information button will open a window which displays the Fault ID code and simply description of any active faults at that time. Figure 32 Active Faults Using Find Range Errors button will show range of existing errors. ## **Motor Setup Buttons** Figure 33 Motor Setup Buttons ### Change Motor Algorithm Changing the motor algorithm requires a significant number of parameters to be updated for the new algorithm. The system should be put into a safe state before changing algorithm In order to change the motor control algorithm, you need to use the button. Depending upon the BorgWarner motor controller variant and the installed firmware, you may be able to switch between different control algorithms. As an example Dragon 8 motor controller gives the flexibility to switch between three different algorithms as it is depicted in Figure 34 (a), while the Gen 4 motor controller with induction slip control firmware does not give the flexibility to change the algorithm as the button is disabled in Figure 34 (b). The controller must be reprogrammed to change the motor algorithm. Figure 34 (a) change motor algorithm in Dragon 8 (b) No algorithm change possible in Gen4 with induction slip firmware ### **Change Control Mode** Changing the control mode requires a significant number of parameters to be updated. The system should be put into a safe state before changing mode In some firmware versions, the BorgWarner motor controller can be configured to operate in torque, or speed control mode. Other versions only support torque mode. If available DVT can be used to switch between the two modes, by using the "Change Control Mode" button. Once this button is selected, a small drop-down menu
will come from the button: Figure 35 Change Control Mode When switching the control mode, DVT will first be automatically put into pre-op. Figure 36 mode change confirmation The DVT will then confirm whether you wish to set the defaults of the new mode. It is recommended to only apply these default settings if the default torque or speed mode configuration requires configuration. Please ensure you have already saved your existing configuration into a DCF file as instructed in the section on page 55. Figure 37 mode change additional settings #### **PMAC Encoder** Incorrect sensor angle offset or wiring can lead to torque being applied in the opposite direction as expected The DVT can be used to manually align the Permanent Magnet AC encoder signals with the mechanical position of the rotor. With this, the controller will know the correct angle of the flux to produce the desired torque from the machine. A misalignment of the encoder will cause reduction of torque per amps available, or potentially incorrect torque direction. The allowable range to configure the offset angle is between 180 and -180 degrees (if you see two offsets, then adjust the second one leaving the first one set to zero, since the first one is limited to smaller adjustable range). From this window the offset angle can be changed in steps of 1 degree. Figure 38 PMAC Encoder Window If you are using a sin/cos encoder type, you will see the option to commission the peak and trough of the connected sensor. Please ensure you have already rotated the motor at least one mechanical revolution before activating this option. Figure 39 sin/cos commission result (NOTE in this example the rotor hasn't been turned before commissioning as the peak and trough values are almost the same) ### PMAC Max Speed Voltage While connected to a Permanent Magnet AC motor, the DVT can perform some simple calculations to check on the allowed BEMF (Back EMF voltage) for the configured motor. The results of these checks can be viewed through the "Max Speed backEMF Limit" button found here: Figure 40 PMAC max speed calculation button Selecting this button will open a screen containing the voltage data calculated based upon the motor parameters already configured: Figure 41 PMAC motor voltage calculations ### Torque/Speed Maps (Motor Power Limit Map) The DVT can be used to configure the entire torque/speed relationship of a motor through the use of the "Torque/Speed Maps" button. Selecting this button will create a dropdown from the button that looks like this: Figure 42 Power Limit map selection Selecting a map will open a table and graph like this: Figure 43 Power Limit Map The main function of the power limit table is to configure the maximum torque allowed across the speed range of the motor, which then limits the power: speed*torque = power Depending upon the motor type and algorithm being used different options to help set the correct power limit map will be shown in the power limit helper window. ### DC link Voltage Cutback Map The DVT will allow control over the voltage cutbacks for the controller. This can be accessed through the "Drive/Regen Volts Cut Map" button. In the table below, it is shown that the voltage for the connected controller is between 43V and 70V. Inside this range, the torque request to the motor won't be restricted. Above or below these limits however; the torque will decrease as configured in the voltage cutback gain. Figure 44 voltage cutback map These limits are customizable and should be set according to the voltage rating of the controller and system. Each value has two arrows shown here: | age | New Vo | tage | |------|--------|------| | 43.0 | 43.0 | | | 43.5 | 43.5 | | | 44.0 | 44.0 | | | 60.0 | 60.0 | | | 69.0 | 69.0 | | | 70.0 | 70.0 | | | 70.0 | 70.0 | | | 70.0 | 70.0 | | | 70.0 | 70.0 | | | | | | Figure 45 voltage cutback adjustment Each click of one of these arrows will increase/decrease the value in the corresponding box by a value of 1 volt. Alternatively, new values can be entered into the boxes manually through the keyboard. The same customization can be applied to the level of torque that is cut back in the same way. This is seen under the "New cutback" gain. #### **Local Motor Limits** DVT allows configuration of the main limits in both current, torque and speed of a motor. The easiest way to access these functions is the local limits "Local Motor Limits" button found here: Figure 46 Selecting Local Motor Limits Selecting this button will open the local limits window: Figure 47 Local Motor Limits For example to change the Maximum torque from 100% to 80% of the peak, the process is as follows: First, clear the text box of the torque limit: To save the change to the controller, select the Write Values button in the bottom right of the window. #### **Control Gains** Incorrect gains can cause unstable motor operation, or a requested limit not being applied. DVT allows adjustment of various motor control loop configuration, proportional and integral gains. These functions allow tuning of the motor control gains to smoothly accelerate or decelerate and maintain the requested speed. The "Control Gains" button gives access to these settings and can be found as follows: Figure 48 Selecting Control Gains Selecting this button will open the gains configuration window. Figure 49 Control Gains window Depending upon the controller connected different gains are shown. In the example in Figure 49 the gains in red are used for configuring the speed control/limit gains in the motor torque conditioner. The green gains are for the current control loop, setting different gains in yellow are applied for the D-axis control only, then the gains in green are for Q-axis only. In most cases the D-axis gains can be left at zero, so the green gains are used for both axes. In order to get a smooth response from the controller perform slight changes on these values until obtain the right desired response. For more information about tuning techniques please contact BorgWarner. #### **Motor Thermistor** Incorrect thermistor configuration can cause the motor temperature to exceed the upper limit and the motor to be damaged. It is recommended to connect the motor thermistor to the controller so that the motor temperature can be monitored and to protect against high motor temperatures. The easiest way to configure this is using the thermistor configuration window opened from the Helper main page: "Motor Thermistor". This window shows a summary of all the different thermistor parameters with lniks to open them directly for editing: Figure 50 Motor Thermistor window Depending upon the controller connected different thermistor mode options may be shown. Typically, either "None" or "Thermistor" options are used. Although some motors contain an overtemperature thermal switch rather than a thermistor. Figure 51 Thermistor mode Due to the large number of thermistor variants available, a map is provided to configure motor temperature feedback against resistance measured. The most common thermistor types can be quickly configured by setting the option to set the user defined thermistor map to for example KTY84. Figure 52 User Defined Thermistor Map shortcuts Figure 53 User Defined Thermistor Map To give full configuration of allowed motor torque with changing motor temperature, a map is provided so that the desired de-rating profile of the motor can be set. Figure 54 Manually configured cutback If a failure occurs in the thermistor or its wiring during motor operation, this could lead to the torque being rapidly removed during the vehicle operation, as the thermistor feedback resistance makes the motor either seem to be very hot or very cold. To avoid this, the thermistor wire-off cutback rate can be set to allow sufficient time for the vehicle operator to react to the thermistor wire-off warning being set. The required recovery time if a fault in the thermistor wiring resolves during vehicle operation. Figure 55 wire-off cutback back rate ## **Driver Pipeline** The "Driver Pipeline" button opens a window in the DVT configuration helper that can be used to easily access some useful debugging objects found inside the controller. The button can be found here: Figure 56 Drive Pipeline button This will open up the driver pipeline window for monitoring the controller: Figure 57 Driver Pipeline #### **Battery Limits** Incorrect DC link voltage configuration can lead to damage to other components connected to the DC link Protection for both the maximum and minimum DC link voltages that are applied to the controller are configurable in the DVT. These settings can be changed using the window opened with the "Battery Limits" button: Figure 58 Battery limit window selection The battery limits / voltage cutback button displays the following window: Figure 59 Battery Limits Setup for Dragon8 96V Motor Controller In a typical vehicle system with Traction Application enabled and a single local motor controller used. There are 2 DC link voltage cutbacks available, one for the battery carried out by TracApp (which is also applied to remote nodes driven over CAN) and one for the local controller's DC link capacitors calculated within the motor control "Torque Conditioner". Clicking on "Show defaults for cutback" will set values appropriate for the motor controller connected, however these may not be suitable for the system and should be adjusted accordingly. Clicking on "Calculate / Write voltage cutbacks" the motor control voltage map is configured as entered. The TracApp voltage cutback is set "out of the way" to the minimum and maximum for the controller as in most application using the motor control DC capacitor cutback is most appropriate. As it is calculated and applied at a faster rate to give more precise DC link control and protection. Alternatively, to manually change the under-voltage limit (the minimum voltage that can be set without the line contactor opening) from 55V to 48V,
the steps are as follows in Figure 60: Figure 60 using the DVT helper tree to search and configure an object First, clear the text box of the actual limit. Figure 61 Under voltage limit parameter And then enter the desired under voltage limit (in this case, 48v) Figure 62 Under voltage parameter set to 48V To save the change to the controller, select the Write Values button in the bottom right of the window. Alternatively you can configure the same parameter through: DVT Configuration Helper → Tree→ Tree→ Vehicle Master Applications→ Battery Application (Protection & Contactor) → Batt Undervolt Protection Now reopening the Battery Limits window it will be modified according to the change we have applied: Figure 63 Battery Voltage configuration # V/F Ratio (Only for V/F Induction Motor on HVLP and Slip Control Mode on Gen4 LV) DVT can be used to configure the voltage/frequency ratio for induction motor control through the "V/F Ratio" button found here: Figure 64 V/f ratio configuration Selecting this button will open the induction motor Nameplate and V/f ratio calculation window. Most induction motors have the key motor parameters supplied on a plate fixed to the motor. Using these parameters some key control values can be automatically calculated. If the plate is not present on the motor please contact the motor manufacturer or refer to the motor datasheet for more information. | Induction Motor Na | ameplate | |---|---------------------------| | Rated line voltage (Vrms) | 34.0 | | Rated phase current (Arms) | 110.0 | | Rated mechanical speed (rpm) | 3372.0 | | Rated frequency (Hz) | 115.0 | | Rated power (Kw) | 2000.0 | | Power factor (sin theta) | 0.832977294921875 | | Read Nameplate Params | Write Nameplate Params | | Calculate V/F Parameters | | | V/F Ratio Calculations | | | Im rated (A) | 45.6875 | | Magnetizing Inductance (Lm) (uH) | 595.0927734375 | | Ud stabilization factor (induction slip) () | | | ou stubilization factor (madetion slip) () | 0.0 | | lq_min factor (induction slip) () | 0.0 | | | | | Iq_min factor (induction slip) () | 0.0 | | Iq_min factor (induction slip) () vf gain (induction slip) () | 0.0 | | Iq_min factor (induction slip) () vf gain (induction slip) () Number of Pole Pairs (np) () | 0.0 0.0 2.0 | | Iq_min factor (induction slip) () vf gain (induction slip) () Number of Pole Pairs (np) () Nominal battery voltage (V) | 0.0
0.0
2.0
48.0 | Figure 65 V/f parameter configuration ## **Traction Application Buttons** #### **Baseline Profile** The Baseline profile is the default settings applied within the Traction Application in BorgWarner's motor controllers. You can find its configuration button under Traction Application section inside DVT Configuration Helper main tab. Figure 66 TracApp Baseline Profile Once you select "Baseline Profile" button it will bring up this window full of objects on the right side of the DVT configuration helper: Figure 67 Traction baseline profile configuration As an example, let's change the maximum forward and reverse speeds to be requested for the motor. First click inside of the appropriate text boxes and delete the contents as shown. Figure 68 TracApp profile speed limits Then, enter the desired figures into the boxes: Figure 69 TracApp profile speed limits Finally select the Write Values button found in the bottom right of the window to finalize the values. The successful write should be indicated with a temporary change of the write button. **Note:** In order to write a single value, you can use Ctrl+Enter keys. Also by using Ctrl+Up or Ctrl+Down keys you can write the 'double of' or 'half of' the current value. ## **Driveability Profiles** Multiple drivability profiles allow vehicle operation to be tuned under different speed, torque, acceleration and deceleration profiles. The buttons to access them are shown below: Figure 70 Additional Drive Profile Selecting either of these buttons will open the appropriate profile configuration window. The available parameters are identical to the window from "Baseline Profile" and can be edited in the same way. The different profiles can be activated using external switches, over CAN or during configurable vehicle operating conditions. ### Steering Steering Dual motor vehicles with left and right motors, which use the drive motors for turning, require some means of determining the angle of the steering wheel. If the vehicle steering wheel is fitted with an angle sensor, configuration of this vehicle functionality can be accessed with the Figure 71 Steering configuration button This will open a window to the right of the DVT helper: " button. Figure 72 Steering Setup window From this window, the steer angle voltages corresponding to fully left (-90 degrees), straight ahead (0 degrees) and fully right (90 degrees) are accessible. The corresponding values are used by the controller to calculate the steering angle based on the analogue voltages from the steering potentiometer. The steering map defines the relationship between the inner and the outer wheel speeds and the steering angle. Each map (inside table and outside table) has 4 definable points; this can be seen on the graph. The steer map can be defined by 4 points relating the steering angle between 0 and 90 degrees and the torque/speed demand (per unit) between -1 and 1. Where a demand of -1 is shown at 90 degrees, this means the inner wheel demand will be equal and opposite of the outer wheel. In speed mode, the outer wheel speed target and maximum torque are scaled according to the outer wheel map, while the inner wheel speed target and maximum torque is scaled to the outer wheel demands according to the inner wheel map. In torque mode, both inner and outer wheel maximum speeds are scaled according the outer wheel map. The outer wheel target torque comes from the throttle. The inner wheel target torque is scaled to the outer wheel actual torque according the inner wheel map. ## Input / Output Buttons #### Local IO Monitor DVT can be used to monitor the digital and analog inputs wired to the controller, and also the mapped VPDO inputs/outputs to the motor controller using the "Local IO Monitor" "button found here: Figure 73 Local IO monitor button This will open a window showing the raw analogue inputs/outputs and also VPDO mapping if available: Figure 74 Local VPDO and IO monitoring ### **Analogue Ranges** DVT allows the user to adjust the minimum and maximum allowed voltages on the analog inputs attached with the motor controller for wire-off detection. These functions can be accessed through the "Analog Ranges" button found here: Figure 75 Analog ranges button This will open the following window: Figure 76 analog input ranges The setting highlighted above is going to be changed from 0 to 5V. To do this, first click inside of the appropriate text box, and delete the contents. Figure 77 Analogue input 1 minimum Then, enter the desired figures into the boxes like so: Figure 78 Analogue input 1 minimum Finally select the Write Values button found in the bottom right of the window to finalize the values. Alternative CTRL+ENTER shortcut can be used to write a single modified value. ### Throttle/Footbrake setup Although the throttle measurement is performed in pre-operational state to prevent vehicle drive, ensure the vehicle is in a safe test condition, for example wheels raised with axle stands. DVT allows the user to configure automatically throttle and/or footbrake analog inputs through" Throttle / Footbrake setup " button. Clicking on this button shows you two options: Figure 79 Throttle/Footbrake setup Selecting throttle setup, DVT asks you to go full throttle: Figure 80 Throttle auto setup Once you apply the full throttle, click on OK and the DVT will configure the throttle automatically. Using similar approach, you will be able to configure automatically footbrake too. ## Advanced settings ## Controller Access Level / Passwords Changing the stored passwords within the controller, can permanently prevent access to the controller configuration which can only be resolved returning the controller to BorgWarner. This is not covered by warranty, so this section only explains changing the passwords stored in DVT used to login to the controller. The password configuration is launched from the Edit menu: Figure 81 Login password configuration The password window allows custom passwords to be used for Gen4 size 2,4,6 login and also separately for Gen4 DC, HVLP, Dragon8 and Gen5 size 9. Figure 82 Default login passwords #### Firmware Installation Incorrect firmware can cause unexpected vehicle operation. If loading firmware for a different algorithm a significant number of parameters need to be reconfigured. You should ensure the firmware you are loading is a released version. The firmware of the controller uses a .dld or .dldx file extension and is an integral part of making the BorgWarner motor controller function correctly. On some products (Gen4) the firmware must be changed to use different motor algorithms. BorgWarner controllers will come with firmware already installed that in most cases should be suitable, but sometimes downloading a different or updated firmware is required. Click on Reprogram Unit Firmware buttons found in DVT configuration helper; Main Tree Input / Output CAN / PDOs Get Controller Info Get Controller Report Reprogram Unit Firmware Controller Settings Get Fault Information Find Range Errors Set Operational Set Pre-operational Figure 83 Firmware programming button Selecting this will ask you to select the new firmware file to begin the process of installing new firmware. Please note that this process is slightly different for different BorgWarner motor controllers. While for Gen4 size products you need to select one dldx file, for Dragon 8 and HVLP you need to select first the dldx file for MCP (motor
controller processor) and then dldx file for IOP (input/output processor). Figure 84 Dragon 8 Motor Controller Reprogramming with 2 dld files (a) Reprogramming Firmware button in DVT Configuration Helper (b) Sequnce of dld files selection Selecting the desired DLD and opening it the DVT will then being automatically installing the DLD into the controller, its progress can be viewed for the DVT main window. Figure 85 Firmware download progress Take into account that during the reprogramming process the controller will be in bootloader mode where it will be unresponsive to commands, and will display errors or timeout when changes are attempted to anything aside from software. Please wait for programming to complete. ## Uploading and Downloading Settings (DCF) Configuration files have the DCF extension and are the files in which the settings and parameters of the controller are stored. DCFs can both be uploaded and downloaded from the controller through the Controller Settings button located in DVT configuration helper main window. Figure 86 Controller settings menu Selecting "Save DCF from unit" will save the current configuration inside the controller to wherever the user wants. Loading a dcf typically overwrites all of the configuration in a controller. This cannot be undone. It is recommended to create a backup of the existing configuration first. Incorrect configuration can cause unexpected system operation. Changing DCF however is done through the "Send DCF to unit" option. Selecting this option will notify the user about new settings which cannot be undone; Figure 87 DCF download confirmation Selecting a DCF will result in an upload bar opening over the DVT main screen showing the progress of the DCF installation. Figure 88 DCF download progress When the progress bar has filled, a message should appear at the bottom of the Information Window confirming the successful installation. ``` Software version name in dcf matches unit: 2401.0003 [2402.0004] Configuration checksum in dcf matches unit: 0x3f68 10:13:17. Successful ping on node 1: EDS already loaded okay ``` Figure 89 DCF download check #### Changing Node ID Number DVT can be used to change the node ID of a unit through the DVT configuration helper's tree, CAN Setup as it is depicted in Figure 90. Figure 90 Node ID configuration To change the node ID of a unit, using the "Node ID" option shown in Figure 90 the user can change the ID to the desired one and then using the Write Values button write the new value. The DVT will prompt the user to recycle power on the system. After the power has been recycled, the new node ID will be set. This can be checked by looking at the numbers in the CAN traffic as shown below: Figure 91 (a) Before (Node ID1) (b) After (Node ID2) # Chapter 4: Tree # Chapter 4: Tree ## Tree The easiest way to navigate the settings and features of the BorgWarner motor controller is the Tree menu. Selecting this tab will open the Tree menu: Figure 92 Tree menu From this menu, there are a couple of different methods that can be used in searching for specific variables or objects. For example, the most intensive of these is the "Search" tab. Selecting it so will open a window that looks like so: Figure 93 Tree search tab In this scenario, a search is going to be performed for the "Maximum Battery Voltage". To do this, enter the term into the search bar found at the top of the object search window. Figure 94 Tree search for battery voltage There is then a choice between viewing the single sub-index that has been searched for or the entire object the sub-index is contained in. Selecting either will present the selected object/index here: Figure 95 (a) Single index (b) Full Object Alternatively, the objects can be browsed through a series of drop-down menus. For example, to find the under voltage cutback in the tree; first open drop down menus by selecting the "+" icon until finding the relevant heading. In this case the Batt Undervolt Protection. Figure 96 tree - battery application Selecting this will create a window to the right of the tree. The settings can then be read/changed using the same method as any other tab in the DVT configuration helper. # Chapter 5: Input/Output Configuration # Chapter 5: Input/Output - Configuration Modifying the IO setup on a vehicle will change the functionality behind the driver controls. Including those related to vehicle safety. Make sure the drive wheels are raised on axle stands. ## I/O Configuration BorgWarner motor controllers can be configured to work with a variety of input/output components of both analog and digital nature. These features can be accessed through the "Input/Output" tab found in DVT configuration helper. Depending on the motor controller variant you might see either of windows depicted in Figure 97. Figure 97 Input/Output section in (a) CANopen based motor controllers, (b) J1939 compatible motorl controllers ## **Local Motor Control** In CANopen the default setting is as shown in Figure 98. By default, the node control will be set to "Motor drive left information". This is the default setting when a single traction motor system is being configured, if you would like information on the other settings however, contact BorgWarner. Figure 98 Default settings in Input/Output window in CANopen based motor controller In J1939 the default is as shown in Figure 99 Figure 99 Default settings in Input/Output window in J1939 based motor controller ## **Digital Inputs** Both digital and analog inputs are governed by the pins in the control unit harness. The settings for the digital inputs can be found here: Figure 100 Digital Input mapping (a) in CANopen based motor controller (b) in J1939 compatible motor controllers In Gen 4 the "'# of inputs" setting has to be set exactly. For example, if the number is set to four, but there are five inputs configured; the DVT configuration helper and also the Gen4 controller will ignore the input configured in number five. The # of inputs can be changed by the small arrows which will raise the number by one in each direction as it is depicted Figure 100 (a). Alternatively, the number can be entered manually in the white box beside the arrows. Setting the number to anything above thirteen will result in the # of inputs back to its default. To change a digital input; selecting the arrow of the input that will be changed will open a drop-down menu. In J1939 compatible motor controllers, you do not need to select the number of active digital inputs, instead you need to select the J1939 source address. Select the new inputs and select the Write Values button to finalize the changes. # Chapter 6: TPDOs/RPDOs # Chapter 6: TPDOs/RPDOs On a multi-node CAN system modifying the CAN configuration can cause unexpected vehicle behaviour ## TPDOs/RPDOs The BorgWarner motor controller can be configured to transmit and/or receive PDOs information packets, known as TPDOs and RPDOs respectively. The configured message structures can be viewed and edited through the CAN / PDOs tab. Selecting the tab will open the PDO configuration window. Figure 101 PDO configuration Up to five RPDOs and TPDOs can be configured at any one time, per BorgWarner controller. The creation/editing window looks like this: Figure 102 PDO configuration Each PDO must have a unique Cob-ID which denotes the priority of the associated PDO, the lower the number; the higher the priority of the PDO. The PDOs have a data size limit of 64 bits (8 bytes), meaning that the TPDO and RPDO can only contain a certain number of objects. ## **TPDOs** Begin by selecting the Add Item button; this will open a window in front of the DVT configuration helper: Figure 103 mapping PDO items Selecting the search button or pressing any key will cause the window to fill with objects. TPDO 1 in this scenario is going to be given the "Heatsink temp" object. To do this, enter the terms into the search bar found at the top of the add object window, and then select the search button. Selecting the map objects button will add the object to the TPDO. Figure 104 mapping PDO items Figure 105 TPDO configuration Note: When adding objects into a PDO, ensure that there are adequate bits left for the desired objects. ## **RPDOs** Figure 106 RPDO configuration Begin by selecting the Add Item button; this will open a window in front of the DVT configuration helper: Selecting the search button or pressing any key will cause the window to fill with objects: Figure 107 mapping PDO items RPDO1 in this scenario is going to be given the "Battery Voltage" and "Vehicle Speed". To do this, the procedure is the same as seen in the TPDO section of this guide: Figure 108 mapping PDO items Selecting the map objects button will add the object to the RPDO. Figure 109 RPDO configuration Finally, select the Write PDO button to save the changes to the controller. # Chapter 7: Motor Demand Control # Chapter 7: Motor Demand Control ## Introduction Controlling a motor direct from a laptop should only be performed on a motor dynamometer test bench by suitably trained and competent personnel, where the high-power supply to the controller can be quickly disconnected safely. If the motor controller has been set up as a slave unit in the IO configuration, using the DVT environment you will be able to send demands to the motor via the CAN communication. For this purpose and according to the type of motor controller you need to use either CANopen demand generator or J1939 transmission window as described in the following. ## **CANopen for Control** The CANopen motor demands window uses SDO commands. A failure in CAN communications leads to the last torque demand to be applied until the controller power is removed. In DVT environment for all Gen4 LV family including size 2, 4 and 6 as well as CANopen software variants of Gen4 HV (size 8 and 10) you need to use the CANopen 402 demand generator window to spin the motor. This window is accessible via button in the main DVT
window. Figure 110 CANopen 402 demand generator button The first time you open then window you may see the warning window as it is depicted in the Figure 111 (a). You need to take into account that CANopen 402 demand generator uses SDO to command the motor controller. Due to the fact that SDOs go to object dictionary, facing a communication loss or closing the demand generator window will cause the last torque to be applied indefinitely. By clicking OK the CANopen demand generator window will open as is depicted in Figure 111 (b) or (c) according to the mode of operation. Figure 111 (a) Warning prior to opening demand window (b) CANopen demand window in torque mode (c) CANopen demand window in speed mode By selecting the correct node according to your hardware setup, you will be able to command contactors, change the control world and send the torque/speed demand and speed/torque limit. ## J1939 (BorgWarner H-and I-protocols) For HVLP, Dragon 8, Gen 5 size 9 motor controllers as well as J1939 software variants of Gen4 HV (size 8 and 10) you need to use J1939 Motor Demands panel to spin the motor in DVT environment. This window is accessible by clicking on "DVT main window as it is depicted in Figure 112. Figure 112 J1939 Motor Demands button In the opened J1939 transmission window, you first need to select the type of motor controller / CAN protocol you are working with from the drop down menu showed in Figure 113 (a). In addition to H-protocol and depending on the motor controller variant you can select I- and G- protocols too (for more information about H-, I- and G-protocols refer to the application notes from BorgWarner). Figure 113 J1939 transmission window (a) drop down menu (b) H-protocol parameters to send in torque mode Once you select the H-protocol you need to set destination address (i.e. the inverter) and CAN message transmit interval according your application. Then you can start spinning the motor by sending HC1, HC2 and HC3 messages including torque demand, controlworld, as well as forward/regen torque and speed limits. ## **Debugging and Tracing** You may need to monitor in real time and save several parameters such as speed, currents, temperatures etc. during the operation. As it is mentioned earlier in chapter 1, for this purpose you can use Vehicle Interface. Inside this window you are able to observe enabled TPDOs and RPDOs as well as H-, I-, and G- protocols. To select what you want to observe you need to use trace items drop down menu as it is reflected in Figure 114. In addition to, you can select the style of the of window through drop down menu. It is also possible to reduce the window update rate so that every CAN message is not displayed. Typical message rates of 20ms are difficult to read and lead to high CPU load on the DVT computer. Changing the display rate does not affect the rate that messages are logged to a file. Figure 114 Trace Items In order to plot a trace, first you need to record the data. To do that you need to decide about the log directory and file name. Following that, by pressing button the DVT starts logging all the parameters shown inside the Vehicle Interface. Once you stop recording, you can plot the recorded data using Log Viewer built-in spreadsheet. To do that use the button.